Inorganic Chemistry

2-Phosphinophenolate Complexes: Formation and Crystal Structure of a Novel Trinuclear μ -O Nickel(II)-Tris(P^OO⁻ Chelate)

Joachim Heinicke,*,† Normen Peulecke,† Konstantin Karaghiosoff,‡ and Peter Mayer‡

Institut für Chemie und Biochemie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany, and Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 München, Germany

Received November 8, 2004

A novel linear trinuclear μ -O-bridging 2-phosphinophenolate nickel(II) complex with *fac*-tris(P^OO⁻ chelates) in the terminal positions and the three oxygen atoms each facing the central nickel(II) cation was synthesized and structurally characterized by X-ray crystallography. To the best of our knowledge, this is the first example of an octahedral Ni(II) tris(P^OO⁻ chelate).

Despite the considerable scientific attention nickel(II) P^{O^-} chelates have attracted with respect to the industrial importance of the Shell Higher Olefin Process (SHOP),¹ octahedral tris(P^{O^-} chelates) of nickel(II) are, to the best of our knowledge, unknown. Only a distorted octahedron formed by additional coordination of *o*-methoxy groups in a mononuclear cationic Ni(III) bis(phosphinophenolate) has been described thus far.² Because of the d⁸ electron configuration of Ni(II) and the strength of the P^{O^-} ligand field, nickel(II) salts and 2-phosphinophenols strongly prefer the formation of diamagnetic square-planar *cis*- or *trans*-bis(2-phosphinophenolate-*P*,*O*) nickel(II) chelate complexes³ with a 16 VE configuration, detected as decomposition products of SHOP-type catalysts.⁴ The cis isomers can coordinate in

- (a) Keim, W. Angew. Chem., Int. Ed. Engl. 1990, 29, 235–244. (b) Keim, W. New J. Chem. 1994, 18, 93–96. (c) Ittel, S. D.; Johnson, L. K.; Brookhardt, M. Chem. Rev. 2000, 100, 1169–1204. (d) Mecking, S. Angew. Chem., Int. Ed. 2001, 40, 534–540. (e) Heinicke, J.; Peulecke, N.; Köhler, M.; He, M.; Keim, W. J. Organomet. Chem. 2005, in press.
- (2) Dunbar, K. R.; Sun, J.-S.; Quillevéré, A. Inorg. Chem. 1994, 33, 3598– 3601.
- (3) (a) Empsall, H. D.; Shaw, B. L.; Turtle, B. L. J. Chem. Soc., Dalton Trans. 1976, 1500-1505. (b) Rauchfuss, T. B. Inorg. Chem. 1977, 16, 2966-2968. (c) Sembiring, S. B.; Colbran, S. B.; Hanton, L. R. Inorg. Chim. Acta 1992, 202, 67-72. (d) Heinicke, J.; Dal, A.; Klein, H.-F.; Hetche, O.; Flörke, U.; Haupt, H.-J. Z. Naturforsch. 1999, 54B, 1235-1243. (e) Heinicke, J.; Koesling, M.; Brüll, R.; Keim, W.; Pritzkow, H. Eur. J. Inorg. Chem. 2000, 299-305. (f) Heinicke, J.; He, M.; Dal, A.; Klein, H.-F.; Hetche, O.; Keim, W.; Flörke, U.; Haupt, H.-J. Eur. J. Inorg. Chem. 2000, 431-440. (g) Couillens, X.; Gressier, M.; Coulais, Y.; Dartiguenave, M. Inorg. Chim. Acta 2004, 357, 195-201 (h) Heinicke, J.; Köhler, M.; Peulecke, N.; Keim, W.; Jones, P. G. Z. Anorg. Allg. Chem. 2000, 630, 1181-1190.

10.1021/ic0484304 CCC: \$30.25 © 2005 American Chemical Society Published on Web 03/08/2005

a μ -O-bridging mode to other metals, as found in heterobimetallic complexes of zinc(II)⁵ or cobalt(II).⁶

We now report on the formation and the molecular structure of a distorted octahedral nickel(II), the first example of a trimeric isomer of the classic $bis(P^{\cap}O^{-} \text{ chelates})$. 2-Diphenylphosphino-4-methoxyphenol (1) was treated with TIOEt and PhNiBr(PPh₃)₂ at -30 °C. After removal of TIBr and concentration of the supernatant solution in a vacuum, the residue was layered with hexane, yielding single brown crystals of the trinuclear nickel(II) complex 2^{7} , which contains six equiv of THF (Scheme 1). Continued crystallization afforded small amounts of the orange cis-bis(P^OO⁻ chelate) nickel(II) complex 3. Triphenylphosphine but no phenylnickel phosphinophenolate was detected in the mother liquor by ³¹P NMR spectroscopy, indicating that, apart from the bromide substitution, cleavage of the Ph-Ni bond had occurred. Phenylnickel complexes [PhNi(2-R₂P-4-R'C₆H₃O)- (PR''_3)] (R = Ph, c-Hex; R' = H, MeO; R'' = Ph, Me) are characterized by an easy dissociation of the PR"₃ ligand but are stable with respect to the Ni phenyl bond.⁸ The replacement of the Ni phenyl group is therefore attributed

- (7) TIOEt (64 μL, 0.91 mmol) was added to a solution of 1 (281 mg, 0.91 mmol) in THF (10 mL), followed at -30 °C by a solution of PhNi(PPh₃)₂Br (635 mg, 0.86 mmol) in THF (15 mL), which induced rapid color change to dark red-brown. The precipitate of TIBr was separated, a large part of THF was removed in a vacuum, and the concentrated solution was overlayered with *n*-hexane. Red-brown single crystals of 2 formed, in an estimated yield of 100–150 mg (30–40%). Continued crystallization provided 15–20 mg (4–6%) of orange 3 (NMR data agree within experimental acurracy with those for 3 in ref 10). Drying of the single crystals of 2 in a vacuum led to loss of THF, yielding a solvate with ca. 4 equiv THF. Anal. Calcd for C₁₃H₁₂₈Ni₃O₁₆P₆ (2308.35): C, 67.64; H, 5.59. found: C 66.82 (combustion incomplete), H 5.49.
- (8) (a) Heinicke, J.; Peulecke, N.; Kindermann, M. K.; Jones, P. G. Z. Anorg. Allg. Chem. 2005, 631, 67–73. (b) Pietsch, J.; Braunstein, P.; Chauvin, Y. New J. Chem. 1998, 467–472.

Inorganic Chemistry, Vol. 44, No. 7, 2005 2137

^{*} To whom correspondence should be addressed. E-mail: heinicke@ uni-greifswald.de.

[†] Ernst-Moritz-Arndt-Universität Greifswald.

[‡] Ludwig-Maximilians-Universität München.

^{(4) (}a) Heinicke, J.; Köhler, M.; Peulecke, N.; He, M.; Kindermann, M. K.; Keim, W.; Fink, G. *Chem. Eur. J.* 2003, *9*, 6093-6107. (b) Klabunde, U.; Mülhaupt, R.; Herskovitz, T.; Janowicz, A. H.; Calabrese, J.; Ittel, S. D. J. Polym. Sci. A: Polym. Chem. 1987, 25, 1989-2003.

⁽⁵⁾ Weiss, D.; Schier, A.; Schmidbaur, H. Z. Naturforsch. 1998, 53B, 1307–1312.

 ^{(6) (}a) Dunbar, K. R. Comments Inorg. Chem. 1992, 13, 313. (b) Dunbar, K. R.; Quillevéré, A. Organometallics 1993, 12, 618–620.

COMMUNICATION

Scheme 1. Conversion of 1 to the Phosphinophenolate Nickel(II) Complexes 2 and 3^{a}

to a reaction with ethanol, liberated in the metalation of **1** by TlOEt. Further detailed studies will determine which phenylnickel species are attacked, i.e., the starting material PhNiBr(PPh₃)₂, an intermediate phenylnickel phosphinophenolate or both. This might help to understand the unusual formation of **2**.

The novel trinuclear μ -O-bridging P^O - chelate complex 2 easily loses THF. After drying of the complex at 5 Torr, elemental analysis is consistent with a residual content of ca. 4 equiv of THF. After storage for some weeks the residual amount of THF decreased from 4 to 2 mol equiv. Line broadening in the ¹H NMR spectrum and the apparent absence of a ³¹P NMR phosphorus resonance of 2 is indicative of paramagnetic properties. The molecular structure of 2 was determined by single-crystal X-ray analysis (Figures 1 and 2).⁹ The structure reveals a trinuclear μ -O bridged nickel chelate complex. The three nickel(II) centers display a linear arrangement of face-shared distorted octahedra. The terminal nickel ions Ni2 form facial tris($P^{\cap}O^{-}$ chelates) with the oxygen atoms directed toward and coordinating with the central nickel ion Ni1 that resides at a center of inversion. The three POO- chelates are left- and right-handed three-bladed propellers with a common pseudo- C_3 axis. So far, the structure type found in 2 has been reported only for the 2-phosphinophenolate chelate complexes of typically octahedrally coordinated zinc(II), cadmium(II), and manganese(II), which are of interest as model compounds for trinuclear bioinorganic complexes.⁵ For nickel(II), the structure represents the first example of octahedral coordination by phosphinophenolate ligands, which usually force a square-planar geometry around this d⁸ metal cation.

The Ni–O and Ni–P bonds in **2** are longer than those observed in known square-planar nickel-2-phosphinophenolate chelate complexes (Ni–O 1.856–1.984 Å, Ni–P 2.126–

Figure 1. Molecular structure of **2**. (a) ORTEP plot with displacement ellipsoids drawn at the 25% probability level and hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (deg): Ni1…Ni2 2.8017-(7), Ni2…Ni1…Ni2 180.00(3), Ni-O 2.058(3)-2.072(3), Ni-P 2.4086-(14)-2.4182(13); trans O-Ni1-O 180.0(2)-180(16), cis O-Ni1-O 78.65(11)-79.15(10) or 100.85(10)-100.93(10), O-Ni2-P_{chelat} 82.14(8)-82.46(8), trans O-Ni2-P 160.21(8)-161.07(8), O-Ni2-O 78.73(11)-79.15(11), cis O-Ni2-P 92.37(8)-94.02(8), P-Ni2-P 102.01(5)-104.23(4).

Figure 2. Schematic representation of 2.

2.232 Å)^{2,3d-3h} because of μ -O coordination, increased electron density on Ni, and steric effects by three as compared to two phosphinophenolate ligands. This also causes smaller O–Ni2–P angles within the chelate rings than in nickel mono- or bis(chelates) (84.45–89.45°). The trans O–Ni1–O arrangement is linear, but the cis O–Ni1–O angles are smaller or larger by about 11° than in the ideal octahedron because of the above-mentioned distortions.

The nature of the orange side product **3**, which was, in fact, the expected nickel(II) *cis*-bis(phosphinophenolate) solvated by THF, was established by multinuclear NMR spectroscopy and comparison with an independently synthesized sample (see below). Complexes **2** and **3** contain, on average, two $P^{\cap}O^{-}$ ligands per nickel and thus are structural isomers with different degrees of association. To investigate whether the preference of the uncommon structure of **2** compared to the favored bis($P^{\cap}O^{-}$ chelate) is due to the formation path or to energetic factors (i.e., the mesomeric

⁽⁹⁾ Crystallographic data for **2**: $C_{138}H_{144}N_{13}O_{18}P_{6}$, M = 2452.48; monoclinic, P21/n (No. 14); a = 15.344(3) Å, b = 21.235(4) Å, c = 19.134(4) Å; $\beta = 101.82(3)^{\circ}$; V = 6102(2) Å³; Z = 2; $D_c = 1.335$ g·cm⁻³; absorb coeff $\mu = 0.604$ mm⁻¹; T = 200 K; crystal size 0.31 × 0.15 × 0.14 mm; F(000) 2580; θ range 3.18–27.49 °; index range $-19 \le h \le 19, -27 \le k \le 27, -24 \le l \le 24$; 60037 reflections collected, 13907 independent, 7728 reflections $> 2\sigma$, R(int) = 0.0719; 13907 data/10 constraints/732 parameters were used for the refinement S = 1.040; R1/wR2 [$I > 4\sigma(I)$] = 0.0705/0.1800, R1/wR2 (all data) = 0.1391/0.2145. Nonius Kappa CCD, λ (Mo K_a) = 0.71073 Å, numerical absorption correction, $T_{min} = 0.8988$, $T_{max} = 0.9328$, all non-H atoms were anisotropically refined except C and O of the disordered THF molecules.

COMMUNICATION

effect of the 4-methoxy group, enhancing the basicity and donor ability of the phenolate oxygen), an independent synthesis was carried out by reacting 1 with nickelocene (molar ratio 2:1). This organometallic Ni species does not require an auxiliary base and thus does not produce salt side products, is unable to coordinate bis- or tris-($P^{\cap}O^{-}$ chelates) via μ -O-coordination, and undergoes thermodynamically controlled phenolysis (acid-base reaction) under reflux conditions. Heating of ligand 1 with nickelocene in THF (15 h) led to orange crystals of the monomer *cis*-3 THF.¹⁰ This compound is highly soluble in THF and CDCl₃ and only partly soluble in hexane. Alternatively, heating of ligand 1 with nickelocene in toluene (15 h at 80 °C) produced brown solid 4 that was found to be completely insoluble in all of the aforementioned solvents.¹¹ The elemental composition of 4 is consistent with the unsolvated nickel(II) bis(P^OO⁻ chelate), but the unusually low solubility indicates rather stable aggregation, possibly by Ni–O bridging interactions, that is stable even under prolonged heating in boiling THF. The formation of 3 in THF provides evidence that 3 is thermodynamically more stable than 2. The low solubility of 4, not observed for unsolvated nickel(II) bis(POOchelates) obtained from 2-phosphinocresols and nickelocene in refluxing benzene,^{3e} is also evidence that an increase of

the basicity of the O⁻-donor site might influence the formation and structure of nickel(II) $P^{\cap}O^{-}$ chelate complexes, favoring association via μ -O bridging bonds. The unusual formation of the trinuclear species 2 is thus the product of a kinetically controlled reaction path. The reaction probably takes place because of a suitable interplay of rapid (bromide by phenolate) and slower (phenyl by ethoxy) substitution reactions at -30 °C, with possible stabilization of intermediate Ni species by triphenylphosphine ligands and/or THF and final coordination of Ni(II) bis- or tris-(P^O- chelates) to nonchelate Ni(II) species. Further investigations will be required to determine whether the reaction is just limited to 2 and closely related nickel(II) complexes with increased O⁻-donor strength or whether it has more generally applicability. In any case, this example shows that square-planar complexes are not the only structure types available from this $3d^8$ metal ion and $P^{\cap}O^{-}$ chelate ligands; with suitable reagents and reaction conditions, the formation of novel clusters with octahedral nickel $P^{\cap}O^{-}$ chelates is also possible. This widens our knowledge on paramagnetic multinuclear nickel(II) clusters that are of interest for biology as well as physics and material sciences.12

Acknowledgment. We thank M. K. Kindermann and B. Witt for NMR measurements and the Fonds der Chemischen Industrie for the gift of chemicals.

Supporting Information Available: Experimental details for the syntheses of **2–4**, NMR data, color diagram of **2**, X-ray crystallographic file in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC0484304

⁽¹⁰⁾ A solution of 1 (212 mg, 0.69 mmol) and nickelocene (65 mg, 0.34 mmol) in THF (5 mL) was refluxed for 15 h. Partial removal of the solvent afforded 200 mg (78%) of 3. Anal. Calcd for C₃₈H₃₂O₄P₂Ni-C₄H₈O (745.41): C, 67.68; H, 5.41. Found: C, 67.49; H, 5.77. ¹³C NMR: δ 56.1 (OMe), 113.1, 117.5 (τ, N = 58.4 Hz, C-2), 118.7 (τ, N = 16.5 Hz), 121.8, 127.9 (τ, N = 50.9 Hz, C-i), 128.6 (τ, N = 10.7 Hz, C-m), 130.8 (C-p), 132.8 (τ, N = 10.6 Hz, C-o), 151.4 (br, τ, N = 8.1 Hz, C-4), 169.9 (τ, N = 17.4 Hz, C-1 in cis configuration). ³¹P NMR (CDCl₃): δ 34.2.

⁽¹¹⁾ Solutions of 1 (184 mg, 0.597 mmol) and nickelocene (56.4 mg, 0.298 mmol) in toluene (each 5 mL) were combined and heated to 80 °C for about 15 h. The solvent was removed in a vacuum, and the residue was washed with hexane and ether to give 140 mg (70%) of a palebrown solid 4, insoluble in CDCl₃, C₆D₆, acetone-d₆, or THF-d₈. Anal. Calcd for (C₃₈H₃₂NiO₄P₂)_x (673.32)_x: C, 67.79; H, 4.79. Found: C, 67.24; H 4.88.

^{(12) (}a) Gatteschi, D.; Caneschi, A.; Pardi, L.; Sessoli, R. Science 1994, 265, 1054. (b) Barra, A. L.; Caneschi, A.; Cornia, A.; Biani, F. F.; Gatteschi, D.; Sangregorio, C.; Sessoli, R.; Sorace, L. J. Am. Chem. Soc. 1999, 121, 5302. (c) Miller, J. S.; Drillon, M., Eds. Magnetism: Molecules to Materials II.; Molecule-Based Magnets; Wiley-VCH: Weinheim, Germany, 2001.